
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 3, 1-21 (1983) 

A TRANSONIC QUASI-3D ANALYSIS FOR GAS 
TURBINE ENGINES INCLUDING SPLIT-FLOW 

CAPABILITY FOR TURBOFANS 

w. G. HABASHI* 

Concordia University, Montreal,' Quebec, Canada 

G. G. YOUNG SON^ 
Pratt & Whitney Aircraft of Canada, Longueuil, Quebec, Canada 

SUMMARY 

A numerical approximation is taken to the solution of the complex flows existing in gas turbine engines 
with transonic blading. The quasi-3D approach decouples the problem into through-flow and blade-to- 
blade solutions. An industrially practical finite element through-flow solution is developed and for 
blade-to-blade solutions a transonic finite areas method is utilized. The finite element code developed 
is capable of operating in an analysis or a design mode. In both modes a dynamic relaxation factor is 
employed and considerable reduction in solution time can be achieved. Comparisons to streamline 
curvature methods are carried out for simple analytical and complex industrial problems. 
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1. INTRODUCTION 

The aerodynamic flows within turbomachines are of sufficient complexity to warrant consid- 
erable simplifying assumptions before a numerical solution is attempted. The actual flow is 
unsteady, three-dimensional, compressible and viscous. The solution of the Navier-Stokes 
equations is a formidable task. Even with the advent of three-dimensional solutions, 
aerodynamic designers are best served, at least in the preliminary stages, by two-dimensional 
sectional information. 

Numerical analysis of the flows in turbomachines has in general followed the Wu' theory. 
In this theory, three-dimensional flows are decoupled and calculated on two families of 
intersecting stream surfaces. Flows are calculated independently on the S1 (blade-to-blade) 
surfaces and on the S2 (hub-to-shroud) surface. Linkage terms exist between the two 
families. An iterative procedure is required to generate a quasi-3D solution, with the 
solution on one surface feeding into the other until global convergence is achieved. 

The three main approaches to the through-flow problem are (1) Streamline curvature 
methods (SCM), (2) Matrix or finite difference methods (FDM), (3) Finite element methods 
(FEM) . 

Extensive calculations have been made using the first two  method^^-^ and comparisons 
between them have been carried out by several  author^.^.^ The finite element method is a 

* Associate Professor; also Consultant, Pratt & Whitney Aircraft of Canada. 
t Aerodynamicist. 

0271-2091/83/010001-21$02.10 
@ 1983 by John Wiley & Sons, Ltd. 

Received 6 August 1981 



2 W G HABASHI AND G G YOlJNGSON 

recent newcomer to this field, but is quickly establishing itself as particularly well-suited 
to tackling the through-flow problem. Habashi13 gives a summary and review of the three 
methods. 

All three methods start from the assumptions of steady, inviscid flow and numerically solve 
the radial component of the Navier-Stokes equation to establish a velocity-density field 
satisfying the continuity equation. Passage-averaged continuity, momentum, and energy 
equations are derived and are assumed to hold in a plane 8 =constant. Alternatively the 
solution can be viewed as that on a mean blade-to-blade stream surface whose shape is given 
by the geometry of the blade rows. Methods, however, differ in their choice of the mean S2 
surface or streamsheet. 

Once the streamsheet shape has been selected the flow field is broken down into a network 
which depends on the solution method and the unknowns are determined at each of these 
nodal points. With the blade geometry given, a cascade model is used to determine the air 
deflection and the pressure loss. Boundary layer growth along the hub and shroud can be 
calculated and specified as a blockage factor whose effect could be included by recalculating 
new hub and shroud displaced geometries. 

In the present work we address ourselves to both the through-flow analysis and design 
problems as perceived in an industrial situation. We also combine the developed through- 
flow analysis with the finite areas method (FAM) of  McDonald" to form an automated 
quasi-3D solver. It should be mentioned that finite element methods for transonic blade-to- 
blade solutions, based on artificial compressibility, have developed rapidly in the last few 
 year^'^-'^ and now handle transonic or supersonic cascade flows with shocks. With such 
schemes it will be possible to handle the entire transonic quasi-3D approach using a finite 
element method. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Governing equations 

The radial equilibrium equation can be written as: 

where: 

x = axial co-ordinate 
r = radial co-ordinate 
u = circumferential co-ordinate 
V = relative velocity 
C = absolute velocity 
T = temperature 
1 = rothalpy 
s = entropy 

By defining: 
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Figure 1 ,  Flow geometry and boundary conditions 

equation ( 3 )  can be rewritten as: 

r ar 

where b =blockage factor and the boundary conditions of Figure l b  are: 

on hub, RD : = 0 

on  shroud, AC : J r =  1 

a q  
a I 1  

at inlet, AB : -=0 

(4) 

aJr 
an 

at exit, CD : - = 0, where y1 is the outward normal. 
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A quasi-variational integral corresponding to (4) is: 

which upon minimization yields: 

where 
I[KI{W = 

k- " = (I' prb [ E)2+ gy] dr  dx 

In most previous works the contour integral of equation (6) is assumed to vanish since on 
all boundaries ?E' is either a constant (hub or shroud) or  a?/& = 0 (parallel inlet and exit), 
(Figure l(a)). In many engines, for example the Pratt and Whitney of Canada PT6, inlets are 

loot 
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(b) 
Figure 2. Comparison between straight and curved inlets 
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A n  I 

Figure 3 .  Isoparametric formulation of %node quadrilaterals 

far from uniform. Solutions are obviously quite sensitive to the imposed boundary 
conditions at the inlet and the exit. In the present work we maintain aT/an = 0 by building 
an inlet and exit that are, as much as possible, normal to the streamlines at these stations 
(Figure l(b)). The effect of building such an inlet is dramatic, as shown in Figure 2 for the 
inlets and exits shown in Figure 1. We note in Figure 2(a) the non-physical distribution of 
radial velocity at the inlet resulting from the use of a radial first station. By adopting the inlet 
of Figure l(b), both distributions of C, and C, become more realistic. 

3 .  FINITE ELEMENT DISCRETIZATION 

We adopt the curvilinear eight-node isoparametric element where both function, 9, and 
geometry have parabolic representation. In each element 

Q 

i = l  

Ni being the shape functions of the finite element written in terms of the local co-ordinates 6 
and q, shown in Figure 3.  The mid-nodes of the curvilinear elements are obtained by the 
exact procedure shown in Figure 4. 

In an industrial atmosphere where a through-flow program may be heavily utilized in a 
design or an analysis mode it becomes imperative to devise a reliable and efficient automated 
finite element mesh generation procedure. Our present program is totally automated and 

PARABOLA 
~ SPLINE 

--. 
B -- 

Figure 4. Exact mid-node of an 8-node quadrilateral 
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capable of producing finite element grids for design problems as well as extracting detailed 
blade information from Compressor Aerofoil Data-bases (CAD) containing three-dimensional 
aerofoil geometries. 

Given the geometry of the gaspath the program starts by splining the hub and shroud by 
‘local’ splines; in general 15 to 20 points per wall are supplied. The program then determines 
appropriate inlet and exit curves from the calculated wall curvatures. This defines the 
solution domain A-B-C-D of Figure 1. Since three-dimensional blade co-ordinates are 
usually defined independent of the gaspath, the blades are positioned by calculating the 
intersection of the given blade sectional information with the splined wall geometry. In our 
formulation we account for the exact geometry of the leading and trailing edges. The 
program furthermore produces all the necessary blade angle information required in the 
analysis. Since blade metal angles in the meridional direction change during each iteration 
we spline the three-dimensional camber line versus radius and axial position via the 
formulation defined in the Appendix. Once all blade rows’ leading and trailing edges have 

Figure 5. Typical grids used for test cases 
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been completely defined the program then isoparametrically divides the wall length within 
and between blade rows. These subdivisions are user selectable and have the capability of 
being distributed in an expanding/contracting fashion. Divisions in the radial direction are 
also interactively made in the same way. Typical grids are shown in Figures 5(a), (b). The 
mesh generation is also generalized to accept the possibility of a flow dividing splitter as in 
turbofans as shown in Figure 5(c). 

4. SOLUTION PROCEDURE 

(a) Starting solution 

Since equation (7) is non-linear, the matrix [ K ]  is a function of the solution and the system 
is to be solved in an iterative fashion. In the present work the matrix [ K ]  and right hand side 
{ F )  are re-formed at each iterative step with the terms in k,, integrated via a (3 x 3) Gaussian 
integration scheme. The matrix is stored in a skyline form," thereby reducing storage 
considerably, and is solved using an LLT decomposition scheme. Since many of the nodes 
(hub and shroud) have Dirichlet boundary conditions, the matrix [ K ]  is reshuffled to 
eliminate these nodes from the solution. This again contributes greatly to the reduction of 
solution times. Because the matrix in (7) is symmetric and positive definite, it can be shown 
that under a transformation of the form 

w*> = CTI{~> (13) 

where T" is a reduced vector of unknowns, one obtains 

[K]*{q*}  = {F}" 

where [K]" = [TIT[K][T] and is also symmetric. Our initial guess for the solution is provided 
by solving (14) with {F}" set to zero. 

It is found necessary to use an underrelaxation factor to damp the strong changes 
occurring in the first few iterations, which are usually divergent. Our factors, however, are 
not as low as those found in Reference 10. Moreover, as soon as the solution starts converging 
one can use an overrelaxation factor to speed up convergence. Figure 6 shows the con- 
vergence history of the analysis problem of the first stage of Figure 5(a). The results 
demonstrate that an underrelaxation factor of approximately 0.8 produces a steady, very 
rapid convergence. Multistaging changes this situation only slightly. 

(b) Solution update 

Once a reasonable first estimate of 9 has been made for the entire field, one proceeds to 
calculate all thermodynamic variables at each station. 

This begins by calculating the flow velocities from equations (2) and (3). These velocities 
are calculated using the nodal density values of the previous iteration. The calculation 
proceeds by applying conservation laws along streamlines between adjacent stations, these 
are: 

In a duct: Angular momentum, rC, =constant (15) 
In a stator: Total enthalpy, H, = constant (16) 
In a rotor: Rothalpy, I = constant (17) 

To apply these conservation laws between adjacent stations, the streamline origin at each 
node of the station needs to be traced back. From Figure 3, the origin 0 of q4, on the edge 
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Figure 6.  Convergence improvement with relaxation changes 

(8-7-l), i.e. 5 = -1, is 

(18) 
-(T7 - 'PI) + J[(T, - TI)' - 4(2Ts - 2T4)(T1 + 9 7  - 2'3!g)] 

2(T, + T7 - 2Ts) 90 = 

This direct formula prevents the disadvantage of having to obtain the streamline origin by 
iteration. 

Once the conservation property in question has been determined at nodes 2, 3, 4, 5 and 6 
of each element, the loss model, if any, is applied. A11 thermodynamic properties are then 
calculated at these points with the reduced stagnation properties, using thermodynamic 
tables. l9 

(c) Design mode 

Often the gas turbine designer is faced with the task of determining the optimum 3D blade 
shape to achieve a given pressure ratio with a given efficiency. Simple modifications to a 
through-flow analysis program can convert it to a design mode. In the present work several 
design modes have been implemented but only the two main ones are reported here. 

In the first design mode one specifies the desired temperature rise across each stage along 
with estimated losses, say in the form Z = AP/ip,V;L at each nodal point of all trailing edges. 
Experience then dictates how such losses distribute themselves at other nodal points within 
the blade row. Furthermore the designer specifies flow angles at all stator nodes. 

The second option is a quasi 3D design mode where angular momentum (rC,) and 
recovery (defined in Figure 11) are specified at all rotor stations. As in the first design mode 
meridional flow angles and losses are specified at all stator nodes and can again be distributed 
non-linear1 y. 

In  the quasi-3D algorithm the above input serves as a starting point for an initial 
through-flow analysis. Such analysis then determines, inlet Mach number, inlet and exit flow 
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Figure 7. Convergence of OLE with quasi 3D iterations 

angles, and a distribution of intrablade streamtube heights. This information is then used to 
typically analyse from 5 to 10 blade-to-blade sections in each blade row. 

The results of these blade-to-blade solutions are interpreted to yield new input to the 
through-flow code. Convergence, i.e. agreement between successive codes, is automatic. 
Figure 7 shows the convergence of one of the monitored parameters with iteration. 

5.  TEST CASES AND RESULTS 

The FEM program has been thoroughly tested against the SCM and showed impressive 
gains in solution time. Both methods worked well in most tests but the SCM failed each 
time a gaspath with large curvatures was used or when too many intrablade stations 
were required. Streamlines for two axial compressors and a turbofan are shown in Figure 8. 

Test Case 1: theoretical annular diffuser 

annular diffuser. Since our program does not specify T at inlet and exit, we have specified 
An analytical solution'" is available for the inlet and exit sections of the swirling flow in an 

so that 

At  inlet 

1 d p  C: 
- -R2r 

p d r  r 

H,=$[C,"+C:]+ R'r d r  I 
Ho, = $[ V' + + C,T, for forced vortex flow 
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Figure 8. Streamline pattern for grids of Figure 5 

and 

To, = H,/CP 

Po,= P ~ ~ " ~ ( T o / T ~ ~ " ~ ) ~ ' ( ~ - l )  
Pohub = 14.732, arbitrarily 

The geometry of the diffuser is given in Table I. 
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Table I 

11 

X Y X Y 

-23.0 2.0 -23.0 5.0 
-21.5 2.0 -21.5 5.0 
-20.0 2.0 -20.0 5.0 
-18.5 2.0 -18.5 5.0 
-17.0 2.05 -17.3 5.01 
-15.5 2.3 -16.0 5.2 
-14.0 2.9 -15.0 5.45 
-12.5 3.8 -13.5 6.17 
-10-8 5.0 -12.0 7.1 
-9.3 5.95 -10.5 8.18 
-8.2 6.5 -9.0 9.07 
-7.0 6.8 -7.5 9.7 
-5.8 7.0 -6.0 9.95 
-4.5 7.0 -4.5 10.0 
-3.0 7.0 -3.0 10.0 
-1.5 7.0 -1.5 10.0 

0.0 7.0 0.0 10.0 - 

W\Te/b = 4.2059 Ih/sec. 
N/@ = 0 
BF = 1.0 
Cw - OR ft./*. 

= 120 rads./sec. 70r 

100 I I I I 
2 3 4 5 

RADIUS AT INLET llnchesl 

20 
7 8 9 10 

RADIUS AT EXIT finches1 

Figure 9. Theoretical annular diffuser, axial velocity 
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THEORY - 
0 FEM 
a SCM 

Convergence of the solution occurs in 4 iterations and solution times are about 4 seconds 
for 18 stations of 11 nodes each. The agreement with theory is excellent, at inlet and exit, as 
shown in Figures 9 and 10. Accurate solutions are obtainable with very few points at each 
station. 

Test case 2: free vortex compressor 

To further verify the correctness of the code we solve for the flow shown in Figure 11. It is 
a free-vortex flow in an axial compressor stage with radial blades. Losses are supplied in the 
form of the recovery shown in the same Figure. Again the results are comparable between 
FEM and SCM as demonstrated in Figure 12. 

Solution times and convergence history are substantially different, however. The SCM 
program converges in 77 iterations with a corresponding execution time of 26 seconds, while 
the FEM converges in 4 iterations and uses 6 seconds of execution time. 

Test case 3 :  design of first stage of an axial compressor 

The method is tested in the through-flow design of a typical compressor. Figure 5(a) shows 
the FEM grid used in the first stage of this (4A+1C). Figure 8(a) shows the resulting 
streamline distribution for this case. 

The design uses rC,, recovery and blockage inputted at all stations. Some of these 
distributions are shown in Figure 13. 

I I I I I 
7 8 9 10 

RADIUS AT EXIT linchesl 

THEORY - 
0 FEM 
Q SCM 

0- 
7 8 9 10 

RADIUS AT EXIT linchesl 

Figure 10. Theoretical annular diffuser, exit velocity and flow angle 
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Figure 11. Cylindrical ductifree-vortex compressor 
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Figure 12. FEM vs. SCM for free-vortex compressor 
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Figure 15. FEM vs. SCM results at second intrablade station 

Figure 16. FEM vs. SCM results at rotor trailing edge 
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Typical FEM results plotted with SCM results are shown in Figures 14-16. Solution time 
comparisons are in the order of 2.5 : 1 in favour of finite elements. Three inside planes were 
used in the rotor with both methods. 
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Test case 4: design of a typical axial compressor 
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Figure 8(b) shows the streamlines generated for an axial stage of Figure S(b). Selected 
results for the first stage of this design are shown in Figure 17. 
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Figure 17. E M  results for first stage of Figure 5(b) 
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No comparison is made to SCM as all attemps to run SCM with 3 inside planes failed to 
converge. 

CONCLUSIONS 

A practical finite element through-flow approach has been demonstrated. Some industrially 
necessary practical aspects have been added and their effect shown. Direct comparisons to 
streamline curvature methods have been made for theoretical simple geometries as well as 
complex industrial geometries. The finite element method is shown to be at least from 2 to 4 
times faster with no problems occurring under any geometries or curvatures. Applications to 
turbofans have been made and integration into a quasi-3D package has been demonstrated. 
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APPENDIX. METAL ANGLE DEFINITION ALONG 
ARBITRARY STREAM SURFACES 

Definition of the blade angle 

Given the 3D camber line the blade angles are defined as follows: 

or 

Comber line in CAD file 

- Stream Surfoce 
(arbitrary, defined by 
onolysis program) 
2 

Figure 18 

dm 

86 tan6 = r -  
am 

p =cos-l (x) 
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Figure 19 

Definition of the mesh orientation 

The finite element mesh is defined in the meridional plane, which is in the z--I system. 
Each mesh line, in a blade row, is fitted with a cubic spline through the mesh points. This 

is done for each of the ml and m2 mesh lines shown in Figure 19. This is especially important 
at the leading and trailing edges as they are curved. 

Therefore, 

rm, = Hz,,) (26) 

z m z  = W m Z )  

and 

From the above splines we may obtain drldz. 

Calculation of the blade angle along the specific mesh lines 

A surface of revolution is obtained by rotating the mesh line about the axis of the engine 
(2). We can obtain, by splining, a camber line that is the intersection of the surface of 
revolution and the blade. 
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The 3D camber line can then be defined by two 2D splines, one being in the (z, x) plane 
and the other being in the (z, y) plane. 

(27) 
z-x plane x = fi(z) 
y-z plane y = f2(z) 

From equation (24) 

dm J[(dr)2 + ( d ~ ) ~ ]  
ds 

cos p =-= 
J [ ( ~ X ) ~  + ( d ~ ) ~  + (dz)*] 

Differentiating (26) and (27) so that 

dy - A(z) 
dr dx 
dz dz dz -=F' ( z ) ;  -=fi(z); -- 

and substituting the above derivatives into equation (28) we can calculate the 0 along the 
mesh line as being 

Calculation of the blade angle along a given meridional direction at a mesh point 

Figure 21 

At a given mesh point in the local meridional plane one uses equation (25) in the cylindrical 
*ystem instead of equation (24). 

a6 
tan@ = r- 

dm 
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By taking directional derivatives of 8 along the direction of m 

ae ae 30 -- -cos b,---+sin 4- am az ar  
applying this relation along mesh lines m, and m2 

ae ae d o  
- = c o s ~ l - + s i n ~ l -  
am, az d r  

ae ae ae - = cos 4 1 ~  -+sin (b2 - 
am2 az a r  

From (32) and (33) 

From equation (30) 

in the ( z ,  r )  plane one gets 

(32) 

(32) 

(33) 

Therefore the blade metal angles along the mesh lines m, and m2 become p1 and p 2  so that 

Substituting equations (34)-(37) into equation (31) one obtains 

thus storing PI, P2, & and d2 in the mesh generation stage one can determine @ for any 
arbitrary stream surface inclined at angle 4. 
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